Dirichlet heat kernel estimates for $\Delta^{\alpha/2}+ \Delta^{\beta/2}$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Kernel Estimates for Dirichlet Fractional Laplacian

In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...

متن کامل

Dirichlet Heat Kernel Estimates for Δ +δ

For d ≥ 1 and 0 < β < α < 2, consider a family of pseudo differential operators {Δ + aΔ; a ∈ [0,1]} on R that evolves continuously from Δ to Δ + Δ. It gives arise to a family of Lévy processes {X, a ∈ [0,1]} on R, where each X is the independent sum of a symmetric α-stable process and a symmetric β-stable process with weight a. For any C open set D ⊂R, we establish explicit sharp two-sided esti...

متن کامل

Dirichlet Heat Kernel Estimates for Fractional Laplacian with Gradient Perturbation

By Zhen-Qing Chen∗,‡, Panki Kim†,§ and Renming Song¶ University of Washington‡, Seoul National University§ and University of Illinois¶ Suppose that d ≥ 2 and α ∈ (1, 2). Let D be a bounded C open set in R and b an R-valued function on R whose components are in a certain Kato class of the rotationally symmetric α-stable process. In this paper, we derive sharp two-sided heat kernel estimates for ...

متن کامل

Dirichlet Heat Kernel Estimates for ∆α/2 + ∆β/2

For d ≥ 1 and 0 < β < α < 2, consider a family of pseudo differential operators {∆α + a∆; a ∈ [0, 1]} on R that evolves continuously from ∆ to ∆ + ∆. It gives arise to a family of Lévy processes {Xa, a ∈ [0, 1]} on R, where each X is the independent sum of a symmetric α-stable process and a symmetric β-stable process with weight a. For any C open set D ⊂ R, we establish explicit sharp two-sided...

متن کامل

Dirichlet Heat Kernel Estimates for Rotationally Symmetric Lévy processes

In this paper, we consider a large class of purely discontinuous rotationally symmetric Lévy processes. We establish sharp two-sided estimates for the transition densities of such processes killed upon leaving an open set D. When D is a κ-fat open set, the sharp two-sided estimates are given in terms of surviving probabilities and the global transition density of the Lévy process. When D is a C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2010

ISSN: 0019-2082

DOI: 10.1215/ijm/1348505533